Nuprl Lemma : sum_split
11,40
postcript
pdf
n
:
,
f
:({0..
n
}
),
m
:{0..(
n
+1)
}.
sum(
f
(
x
) |
x
<
n
) = sum(
f
(
x
) |
x
<
m
)+sum(
f
(
x
+
m
) |
x
<
n
-
m
)
latex
Definitions
False
,
A
,
A
B
,
i
j
,
P
Q
,
tt
,
(
i
=
j
)
,
if
b
then
t
else
f
fi
,
Y
,
primrec(
n
;
b
;
c
)
,
t
T
,
sum(
f
(
x
) |
x
<
k
)
,
x
:
A
.
B
(
x
)
,
,
{
T
}
,
SQType(
T
)
,
P
&
Q
,
i
j
<
k
,
suptype(
S
;
T
)
,
S
T
,
{
i
..
j
}
,
ff
,
x
.
t
(
x
)
,
,
x
(
s
)
,
P
Q
,
Dec(
P
)
,
P
Q
,
Unit
,
,
Lemmas
ge
wf
,
nat
properties
,
nat
wf
,
int
seg
wf
,
decidable
int
equal
,
le
wf
,
not
functionality
wrt
iff
,
assert
of
bnot
,
eqff
to
assert
,
assert
of
eq
int
,
eqtt
to
assert
,
iff
transitivity
,
not
wf
,
bnot
wf
,
sum
wf
,
assert
wf
,
bool
wf
,
eq
int
wf
,
ifthenelse
wf
origin